skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Katt, Sammie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While reinforcement learning (RL) has made great advances in scalability, exploration and partial observability are still active research topics. In contrast, Bayesian RL (BRL) provides a principled answer to both state estimation and the exploration-exploitation trade-off, but struggles to scale. To tackle this challenge, BRL frameworks with various prior assumptions have been proposed, with varied success. This work presents a representation-agnostic formulation of BRL under partial observability, unifying the previous models under one theoretical umbrella. To demonstrate its practical significance we also propose a novel derivation, Bayes-Adaptive Deep Dropout rl (BADDr), based on dropout networks. Under this parameterization, in contrast to previous work, the belief over the state and dynamics is a more scalable inference problem. We choose actions through Monte-Carlo tree search and empirically show that our method is competitive with state-of-the-art BRL methods on small domains while being able to solve much larger ones. 
    more » « less
  2. Model-based Bayesian Reinforcement Learning (BRL) provides a principled solution to dealing with the exploration-exploitation trade-off, but such methods typically assume a fully observable environments. The few Bayesian RL methods that are applicable in partially observable domains, such as the Bayes-Adaptive POMDP (BA-POMDP), scale poorly. To address this issue, we introduce the Factored BA-POMDP model (FBA-POMDP), a framework that is able to learn a compact model of the dynamics by exploiting the underlying structure of a POMDP. The FBA-POMDP framework casts the problem as a planning task, for which we adapt the Monte-Carlo Tree Search planning algorithm and develop a belief tracking method to approximate the joint posterior over the state and model variables. Our empirical results show that this method outperforms a number of BRL baselines and is able to learn efficiently when the factorization is known, as well as learn both the factorization and the model parameters simultaneously. 
    more » « less